Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(5): 1634-1651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481819

RESUMO

Background: Hypoxia induces hepatocellular carcinoma (HCC) malignancies; yet it also offers treatment opportunities, exemplified by developing hypoxia-activated prodrugs (HAPs). Although HAP TH-302 combined with therapeutic antibody (Ab) has synergistic effects, the clinical benefits are limited by the on-target off-tumor toxicity of Ab. Here, we sought to develop a hypoxia-activated anti-M2 splice isoform of pyruvate kinase (PKM2) Ab combined with TH-302 for potentiated targeting therapy. Methods: Codon-optimized and hypoxia-activation strategies were used to develop H103 Ab-azo-PEG5k (HAP103) Ab. Hypoxia-activated HAP103 Ab was characterized, and hypoxia-dependent antitumor and immune activities were evaluated. Selective imaging and targeting therapy with HAP103 Ab were assessed in HCC-xenografted mouse models. Targeting selectivity, systemic toxicity, and synergistic therapeutic efficacy of HAP103 Ab with TH-302 were evaluated. Results: Human full-length H103 Ab was produced in a large-scale bioreactor. Azobenzene (azo)-linked PEG5k conjugation endowed HAP103 Ab with hypoxia-activated targeting features. Conditional HAP103 Ab effectively inhibited HCC cell growth, enhanced apoptosis, and induced antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) functions. Analysis of HCC-xenografted mouse models showed that HAP103 Ab selectively targeted hypoxic HCC tissues and induced potent tumor-inhibitory activity either alone or in combination with TH-302. Besides the synergistic effects, HAP103 Ab had negligible side effects when compared to parent H103 Ab. Conclusion: The hypoxia-activated anti-PKM2 Ab safely confers a strong inhibitory effect on HCC with improved selectivity. This provides a promising strategy to overcome the on-target off-tumor toxicity of Ab therapeutics; and highlights an advanced approach to precisely kill HCC in combination with HAP TH-302.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nitroimidazóis , Mostardas de Fosforamida , Pró-Fármacos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/farmacologia , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Hipóxia
2.
MedComm (2020) ; 5(3): e512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469549

RESUMO

Therapeutic antibodies (Abs) improve the clinical outcome of cancer patients. However, on-target off-tumor toxicity limits Ab-based therapeutics. Cluster of differentiation 147 (CD147) is a tumor-associated membrane antigen overexpressed in cancer cells. Ab-based drugs targeting CD147 have achieved inadequate clinical benefits for liver cancer due to side effects. Here, by using glycoengineering and hypoxia-activation strategies, we developed a conditional Ab-dependent cellular cytotoxicity (ADCC)-enhanced humanized anti-CD147 Ab, HcHAb18-azo-PEG5000 (HAP18). Afucosylated ADCC-enhanced HcHAb18 Ab was produced by a fed-batch cell culture system. Azobenzene (Azo)-linked PEG5000 conjugation endowed HAP18 Ab with features of hypoxia-responsive delivery and selective targeting. HAP18 Ab potently inhibits the migration, invasion, and matrix metalloproteinase secretion, triggers the cytotoxicity and apoptosis of cancer cells, and induces ADCC, complement-dependent cytotoxicity, and Ab-dependent cellular phagocytosis under hypoxia. In xenograft mouse models, HAP18 Ab selectively targets hypoxic liver cancer tissues but not normal organs or tissues, and has potent tumor-inhibiting effects. HAP18 Ab caused negligible side effects and exhibited superior pharmacokinetics compared to those of parent HcHAb18 Ab. The hypoxia-activated ADCC-enhanced humanized HAP18 Ab safely confers therapeutic efficacy against liver cancer with improved selectivity. This study highlights that hypoxia activation is a promising strategy for improving the tumor targeting potential of anti-CD147 Ab drugs.

3.
ACS Nano ; 15(1): 1497-1508, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33372769

RESUMO

Optoelectronic synapses integrating synaptic and optical-sensing functions exhibit large advantages in neuromorphic computing for visual information processing and complex learning, recognition, and memory in an energy-efficient way. However, electric stimulation is still essential for existing optoelectronic synapses to realize bidirectional weight-updating, restricting the processing speed, bandwidth, and integration density of the devices. Herein, a two-terminal optical synapse based on a wafer-scale pyrenyl graphdiyne/graphene/PbS quantum dot heterostructure is proposed that can emulate both the excitatory and inhibitory synaptic behaviors in an optical pathway. The simple device architecture and low-dimensional features of the heterostructure endow the optical synapse with robust flexibility for wearable electronics. This optical synapse features a linear and symmetric conductance-update trajectory with numerous conductance states and low noise, which facilitates the demonstration of accurate and effective pattern recognition with a strong fault-tolerant capability even at bending states. A series of logic functions and associative learning capabilities have been demonstrated by the optical synapses in optical pathways, significantly enhancing the information processing capability for neuromorphic computing. Moreover, an integrated visible information sensing memory processing system based on the optical synapse array is constructed to perform real-time detection, in situ image memorization, and distinction tasks. This work is an important step toward the development of optogenetics-inspired neuromorphic computing and adaptive parallel processing networks for wearable electronics.

4.
ACS Appl Mater Interfaces ; 12(29): 33069-33075, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32589388

RESUMO

Graphdiyne is a new two-dimensional carbon allotrope with many attractive properties and has been widely used in various applications. However, the synthesis of large-area, high-quality, and ultrathin (especially monolayer) graphdiyne and its analogues remains a challenge, hindering its application in optoelectronic devices. Here, a wafer-scale monolayer pyrenyl graphdiyne (Pyr-GDY) film is obtained on hexagonal boron nitride (hBN) via a van der Waals epitaxial strategy, and top-floating-gated multibit nonvolatile optoelectronic memory based on Pyr-GDY/hBN/graphene is constructed, using Pyr-GDY as a photoresponsive top-floating gate. Benefiting from the excellent charge trapping capability and strong absorption of the graphdiyne film, as well as the top-floating-gated structure and the ultrathin hBN film used in the device, the optoelectronic memory exhibits high storage performance and robust reliability. A huge difference in the current between the programmed and erased states (>26 µA µm-1 at Vds = 0.1 V) and a prolonged retention time (>105 s) enable the device to achieve multibit storage, for which eight and nine distinct storage levels (3-bit) are obtained by applying periodic gate voltages and optical pulses in the programming and erasing processes, respectively. This work provides an important step toward realizing versatile graphdiyne-based optoelectronic devices in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...